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ABSTRACTI, 2

Future NASA Earth science missions, including the Earth

Observing System (EOS), will be generating vast amounts
of data that must be processed and stored at various

locations around the world. Here we present a stepwise-
refinement of the Intelligent Database Management (IDM)

of the Distributed Active Archive Center (DAAC - one of

seven regionally-located EOSDIS archive sites)
architecture, to showcase the telecommunications issues

involved. We develop this architecture into a general

overall design. We show that the current evolution of
protocols is sufficient to support IDM at Gbps rates over

large distances. We also show that network design can

accommodate a flexible data ingestion storage pipeline
and a user extraction and visualization engine, without
interference between the two.

1: Introduction

In addition to its manned space program, NASA runs

telemetry-gathering missions. Among the celestial bodies
studied is the Earth. Current and future Earth science mis-

sions (including EOS) will generate enormous amounts of

data. This data must be archived in an accessible manner

to be useful for analysis. EOS in particular will generate a
continuous stream of 11.5 Mbps, which isn't notable

except that the stream is relentless over the life of the sat-

ellite (about 5-10 years), resulting in 5.2 Gigabytes of data
per hour, or 45 Petabytes (10_15 bytes) per year.
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OO01. The views and conclusions contained in this document are those of

the authors and should not be interpreted as representing the official poll

des, either expressed or implied, of the Department of the Amay, the

Advanced Research Projects Agency, or the U.S. Government.

This data is processed prior to storage to facilitate

access, and retrieved and converted into a useful form;

these functions comprise the EOS Data Management Soft-

ware System (DMSS), which is an example of a more gen-
eral concept called Intelligent Database Management
(IDM). Here we present an overview of the telecommuni-

cations issues of IDM, which involves data ingestion, stor-
age, fusion, and rendering. Data ingestion is the

processing of data prior to storage; data fusion is the com-

bining of various streams of stored data to form a compos-

ite information base suitable for direct rendering. The

components of IDM for EOS are distributed globally over

large distances (over 2000 miles) and bandwidth (! Giga-

bit/second). Thus telecommunications issues, including
latency reduction, high bandwidth protocols, and distrib-

uted resource allocation are a fundamental component of
IDM.

Here we present a stepwise-refinement of the Distrib-

uted Active Archive Center (DAAC - one of seven region-
ally-located EOSDIS archive sites) architecture. We also

discuss how current protocols are sufficient to support the
IDM DAAC. We describe a network design that accom-

modates both a flexible data ingestion storage pipeline and

a user extraction and visualization engine.
The most abstract description of DAAC is a set of con-

tinuous satellite data input streams (between 16 Mbps and

26 Kbps, totalling 25 Mbps average, 164 Mbps peak), and

a 200-500 Mbps sporadic user visualization stream, with

low BW user commands. Internally, the input and output

are related only by storage, i.e., the input stream archiving

and output stream generation are independent. We parti-
tion the continuous input archive stream (ingestion) from

the user command and visualization streams (extract),

both of which operate on the data store. There also may be

multiple ingestion and extraction streams per DAAC. The
general design proposed uses separate subnetworks of het-

erogeneous processors - one for ingestion and the other for
extraction. The processors and subnetworks form a

dynamically-configurable dataflow engine, where subnet-

work partitioning inhibits interference and provides recon-
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figurability. We show that the telecommunications aspects
of IDM can be managed by this physical resource parti-

tioning.
More importaritly, we show that existing protocols, or

existing proposals to evolve these protocols, are sufficient

to support IDM. There is a growing controversy in proto-
col research involving the use of existing protocols for

high speed (Gbps) wide area (2,000+ mile) environments.
There ate several protocol issues involved, including soft

real-time delivery (i.e., jitter control), guaranteed band-

width (reservation), and accommodation of high band-

width-delay product links. Issues under investigation

(without evolutionary solutions) include hard real-time

delivery (scheduled delivery constraints), and methods for

latency reduction. IDM data processing (both ingestion
and visualization) requires isochronous data transfer, i.e.,

controlled jitter in transmission and processing. Fortu-

nately, the data collection is automated and uses loosely-

coupled feedback from pound control, rather than from
user visualization. Latency reduction affects only the user

visualization control loop. The user-perceived latency is

likely to be affected more by the extraction processing

latency than by the propagation latency (typically 100 ms).

Existing evolutionary modifications to existing data trans-

port protocols accommodate soft real-time transfer (RTP),
bandwidth reservation (ST-H, RSVP), and high band-

width-delay product links given continuous data streams

(TCP extensions for LFN's).
Some of the initial documents of the IDM project have

described various aspects of the project, but none has con-

sidered the specific telecommunications aspects within

this project, or the impact of those issues on the other

design considerations. This document section is an effort

to augment those discussions sufficiently to suggest a
design of the telecommunications system, from which

other design criteria implications will be readily evident.

2: DMSS Background

The DMSS project is described by a set of documents

that address the overall structure of the EOS and EOSDIS

projects, information management, query derivation from
user directives, data modeling, internal processing, and

database and computation scaling of the IDM DAAC sys-

tem. None yet includes a discussion of the telecommunica-
tions issues involved or of the implications of those issues

on other design criteria. This is partly because telecommu-
nications research is relegated to other projects of the

HPCC effort, and because the telecommunications issues

may not require original research.
One document describes the scaling issues of the data-

base and processing components of the project, but admits

that the processing load cannot be accurately determined a

priori [12]. This indicates that a scalable processing solu-

tion is required, one in which dynamic load configuration

is possible.
Others describe the static issues of database and visual-

ization access to the EOSDIS [5], or the data distribution

and archiving requirements [6]. There are dynamic corol-
laries to these static issues that describe the reconfigura-

tion of the system in a flexible way.

Management considerations mandate a relatively cen-

tralized facility or small set of facilities (the DAACs) [7].

Relieving a centralized load requires a distributed facility,

provided that the data distribution is not orthogonal to the

geographic configuration. Because the DAAC facilities
are geographically distributed, processing within the
DAAC should occur at a MAN or LAN scale. The parti-

tioning of data into functional and operational sets among
the DAACs indicates that inter-DAAC access, i.e., pro-

cessing requiring the participation of more than a single
DAAC, would be unlikely at first.

Data modeling is described using spatial, spectral, tem-

poral, etc. characteristics [1]. This includes a description
of the effects of the variation in access method on the stor-

age organization. These descriptions can be easily aug-
mented to include communications and dynamic post-

processing costs, so as to describe the telecommunications

effects on data organization as well. The only difficulty is
that the telecommunications costs are distributed, whereas

the access method frequencies proposed are local to a par-

ticular DAAC component.

Finally, the high-performance processing of satellite
data before initial archiving requires the use of specialized

equipment and systems [2], [9]. The individual board

design of these components and the functional decomposi-

tion into processing elements is a scalable solution [9].
The board integration currently relies on existing technol-

ogies for system design (VME/VSB), rather than on true
networking of components. The resulting pipeline permits

chaining of processing elements within a single processing
node (i.e., VME/VSB backplane), but not among different

backplanes. Further, components of a single system can he

used to process at most a single data stream, thus prohibit-

ing an ultimately flexible design.

3: Observations

There are other observations that affect the overall tele-

communications recommendations as considered herein.

These include the software issues regarding protocols and

support, and topological issues.
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3.1: Telecommunications software issues

Many of the software issues are already being consid-
ered at various levels of the EOSDIS effort. The software

can be partitioned into 5 main areas: front-end user inter-

face intelligence and expert systems, back-end satellite

data processing before archiving, archival processing for

data management, and extraction processing execution.

Each of these areas has implications for the telecommuni-
cations organization, but the extraction processing is espe-

cially influential.

The front-end user system involves expert systems [ 10],

connectionism [8] or neural networks [3], and support for
user visualization tools. All of these are user-level front-

end issues, and can require sharing of scheduling informa-
tion at the user-access level. This indicates a network of

user-support systems, with loose coupling of state infor-

mation on the availability of back-end resources, and other

competing front-end sessions.

The back-end satellite processing system involves the

use of specialized hardware [2], [9]. Each of these systems
can be independent, as it processes a specific data stream

from a given satellite individually.

The data processing for archiving can also be indepen-

dent because of the partitioning of the databases among

the DAAC sites [7]. Data reorganization is presumed to

occur within operational units of the DAACs [I].

The extraction processing, however, has not been thor-

oughly considered in relation to the system design [12].
Current distributed systems design indicates a back-end

network of dynamically-allocated processing elements,

which can be configured according to the extraction pro-

cessing needs of the users. Such a system is exhibited by a

networked version of the back-end satellite processing

system, with a few modifications (see below). The goal is
a back-end network for the servicing of the user-level

requests, according to the decompositions suggested by

the expert systems at the front-end.

There are other services that are of use, especially in the

software portion of the system. Current protocol technol-

ogy is sufficient to support the data rates and characteris-

tics of the large linear streams of information indicated by
satellite measurements. These include TCP/IP, for stream-

ing data transfer. Other options include remote evaluation

(late-binding RPC), and the conventional remote proce-
dure call (RPC). Conventional RPC requires sending the

data to a remote site and rewieving the results, a mecha-

nism that describes the dynamic allocation of processing

components but requires a central controller to scatter and

gather the data, creating a communications bottleneck that

existing networks cannot support. Late-binding RPC per-
mits the processing components to transmit the results

along to subsequent RPC's, rather than requiring collec-

tion of the results at the originator of the first RPC. This

permits a dynamic pipeline to be created within an exist-

ing telecommunications paradigm.

3.2: Network topology and protocol

Most of the telecommunications issues might be

relieved by a LAN implementation. Exceeding LAN scale

incurs a sharp decrease in data transmission rates. Existing
routing, broadcast, and network management implementa-
tions also favor LAN scales. One solution is to distribute

the access load among the components of a LAN, particu-

larly existing high-speed LANs such as FDDI (100 Mbps)

or FDDI-2 (200 Mbps). The FDDI protocol does not scale

beyond a 100 meter diameter, but this is sufficient to sup-
port the locality of an individual DAAC.

The bandwidth requirements of this network (1 terabit/

day) average out to a continuous 11.6 Megabits/second

[12]. Conventional LAN technology (i.e., Ethernet) sup-
ports 10 Mbps, but only to a maximum of 80% load, i.e., 8

Mbps [11]. This theoretical maximum assumes a single

source station on a network; competition among multiple
sources decreases this to 60% (6 Mbps) [11]. Even a

lightly loaded Ethernet is therefore unsuitable for even a

single hop in the data path from satellite to disk storage.

New fiber optic LAN technology (FDDI) supports rates

of 100-200 Mbps, large enough to support several simulta-
neous hops of the data stream if that stream is buffered and

averaged over a 24-hour period (requiring 1 Terabit of
tape delay). Burst data characteristics are not understood

at this time, either within the EOSDIS system or in tele-
communications in general, and so are not factored into
any solutions.

3.3: Gigablt protocol issues

There are some relevant gigabit protocol issues that

affect the design of the DMSS telecommunications sys-

tem. These include protocol optimizations, rate control

methods, and lightweight protocols.

Protocol optimizations are useful in the processing of

stream data at gigabit rates; these include methods of

header prediction in TCP and factoring frequent header

cases out of the protocol stack. Other optimizations in the
implementation of TCP have shown the operation of this

protocol at rates near 400-700 Mbps, easily supporting

both the satellite ingestion and user visualization compo-
nents of this system.

Rate control methods provide processing adjustment to

reduce queuing requirements, and reduce resulting jitter in

the packet flow. 'Stop-and-go queuing', 'Leaky bucket',

and 'Virtual Clock' are all similar methods for rate adjust-
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ment. However, none are included in currently stable

transport protocol implementations as yet.

Another protocol of interest, especially in the Data

Ingestion operation, is the XTP protocol. XTP is a light-

weight protocol that is designed to be implemented in
VLSI hardware.

Other methods of achieving high performance proto-

cols are not required here. These include other lightweight

protocols, such as protocols that support fast RPC, or low
latency transactions, or methods to reduce protocol com-

plexity. The frequency of transactions in the DMSS sys-

tem is not high enough to warrant these new protocols.

3.4: Suggestions for processing node scalability

One component of the DMSS system, the processing
node architecture, is currently based on the VME/VSB bus

interconnection [2]. A more flexible solution would use

high-speed LAN interconnection methods, such as cross-
bar switches, for "backplane" communication among pro-

cessing components.
One suggestion for possible research in this area would

be the development of a VME/VSB virtual backplane, one
which would permit the arbitrary interconnection of

board-level components but exhibit a conventional VME/
VSB interface. This crossbar-backplane would permit

multiple FDDI interfaces per system aggregate, and thus
multiple LAN loops among systems, permitting a more

flexible implementation. This latter solution could be

implemented incrementally, after the initial implementa-

tion phase of the design.

4: Stepwise-refinement

A first step toward the understanding of the communi-
cations structure is the stepwise refinement of the system

design. These steps are based on the given NASA docu-
mentation, and general principles of system design.

The easiest implementation would be a LAN. The prob-

lem is that there are two load issues: direct query response

load (computation and retrieval of actual data), and meta-
data issues such as scheduling, load evaluation, and secu-

rity access. Security issues are best solved by a physical

partitioning of the network, with a coordinated set of con-
trolled access points. The external access points comprise
a set of nodes that interact through a separate meta-data

LAN. Precomputed plans are sent through the controlled

access point to the inner LAN for execution of the extrac-
tion.

Data ingestion occurs on the way into the inner data

storage LAN, but does not use the outer security/schedul-

ing LAN for access, since satellite-originated paths are

presumed secured at the source. Further, the process of

ingestion need not alter the meta-data storage until
archived inside the inner LAN.

The best way to understand these observations is to see
their evolution and extraction from the existing character-

istics of the DMSS system. Here we present a step-wise
refinement of the telecommunications structure. We also

present a description of the data flow and meta-data flows

of the system, all to finally define the characteristics of the

system sufficient to indicate a design.

4.1: Step 1 - the most general description

The most general description of the EOSDIS system is

as an operational entity. Consider the DAAC as a 'black-

box', with inputs and outputs [6] [7]. Inputs are comprised
of the satellite data stream and the user queries. The output

is the user visualization stream. The size of the arrows and

lines is representative of the qualitative relative bandwidth

requirements.
The input satellite data stream of 1 Terabitlday aver-

ages out to 11.5 Mbps (Figure 1). The user commands
require negligible bandwidth, both because of their small
textual content and their sporadic nature. The user visual-

ization estimate is based on a 1000xl000 pixel display,

changing at a rate of 24 frames/second (movie-quality
video), at a depth of between 8 bits/pixel and 24 bits/pixel.
This results in a session bandwidth of between approxi-

mately 200 and 600 Mbps, or 8-24 Mbits per frame.

Satellite data - 11.5 Mbps

User commands - low BW

User visualization -

192-576 Mbps full-motion

8-24 Mbits per frame

FIGURE 1. Step 1: System input/output

The input satellite stream thus requires a T-3 signal line

(45 Mbps), assuming the 1 Terabit/day rate can be

smoothed to per-second equivalent. The user commands

can be accepted over conventional modem/dialup lines.
The raw visualization stream requires SONET STS-12

rates, which are unlikely to be available for user deploy-

ment in the time-frame of this project. A lossless

intraframe compression at these rates may be available,
and would result in a 20-40 Mbps stream, which could be

supported by FDDI LAN technology (100 Mbps). Lossy

compression, such as JPEG, can further reduce this

requirement to the Ethernet LAN realm at approximately

4-8 Mbps.

298



4.2: Step 2 - partition processing / data

The next step in this refinement involves the partition-

ing of the system component into data and processing

components (Figure 2). The DAAC design is readily parti-

tioned in this manner. This partition is modeled after the

so-called 'Von-Neumann' computer architecture design.

Satellite data

User commands

User visualization

FIGURE 2. Step 2: Von Neumann decomposition

The processing requirements of this diagram are
described in [12]. At this point, the processing and com-

munications requirements are not sufficiently specified to

determine the design, as was noted in the NASA analysis

[12]. At this point, it is evident that this partitioning is not

optimal, because the satellite data input stream and user

visualization streams are largely independent, yet are pro-

cessed in a single entity.

4.3: Step 3 - separate input / output streams

The next step in the refinement includes the description

of the physical and algorithmic components. The process-

ing is partitioned into ingestion, command processing, and
extraction components (Figure 3). The ingestion portion

occurs in specialized hardware [2]. The command process-

ing translates user input into algorithms for extraction,
which are executed in the extraction component [3]. By

this diagram, the I/O intensive components are the inges-

tion and extraction [4], but there is substantial computa-

tion involved in the translations done by the command
processing as well [8], [10].

Satellite data _ ....................... :¢'

User commands
DATA I

User visualization

|

DAAC

FIGURE 3. Step 3: Internal input/output streams

User commands therefore interact with the extraction

process, but not the ingestion, which can be relegated to a

separate component. Further, because the database is
responding largely to command information (vs. data)

from the command and extraction interfaces, the database

might benefit from a partitioned internal structure, so that

data input into an unorganized archive component can be

isolated from the extraction access bandwidth require-
ments.

4.4: Step 4 - Separate into physical components

The final step in the refinement is the addition of parti-
tion information from the known implementation of exist-

ing components. The ingestion engine is known to be

composed of a number of pipeline stages with separate

control and pipeline communication paths [2], [9] (Figure

4). The database is also known to be composed of meta-

data indicating the semantic modeling of the data struc-

ture, and an auxiliary processing element to monitor this
modeling, in addition to the data itself [1].

META

DATA

Satellite data _

/

User commands I _ DATA

User visualization !_
1

DAAC

At

FIGURE 4. Step 4: Internal physical components
(as already specified)

4.5: Step 5 - Replicate interior components

This final step in the refinement indicates that the user

interface issues can be considered independent of the sat-

ellite data ingestion procedures. The decomposition does

not yet indicate the systems issues involved, because only
single users and satellite streams are indicated. We can

augment the structure further by adding multiple copies of

each entity, to denote how the replicated components
interact.
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Wedo not replicate the database component of the
DAAC because we consider user requests within a single

DAAC only. This is reasonable because the data of the
DAACs is partitioned based on expected use and semantic

content. Merging of data streams may occur, but is

expected to be managed by the merging of independently
delivered visualization streams from a number of indepen-

dent DAAC sources.

Figure 5 denotes the interaction between the command

processing elements in a scheduling capacity. The extrac-

tion processes are shown as independent, because deter-

mining overlapping computation is intractable and of little

benefit given independent user control. The satellite pro-
cessing streams ate independent, but the number of pipe-

line stages is flexible and may be allocated from an

aggregate rather than within dedicated system sets.
The decomposition shown here indicates the compo-

nents of interaction and the bandwidth characteristics

between them. It is also useful to view the data streams by

semantic partitioning, in data flow and meta-data flow dia-

grams within the same structure.

Satellite data

Satellite data

MET''_

DATA i

DATA

A User visualization

Usercommands

User commands ti_

User visualizati°n i_

i DAAC

FIGURE 5. Step 4: Internal physical components
(as already specified)

4.6: Data flow diagram

The data flow of the system can be described by two

diagrams: one indicating the satellite data, the other indi-

caring the archived data. The control operations specified

by the user input ate considered meta-data flows, shown
later.

The satellite data flow consists of 1 Tbps streams pipe-

lined through archival processing systems (Figure 6). If

these systems are statically specified, the existing design

of fixed-pipeline configuration will suffice [2]. If the satel-

lite processing components are dynamically allocated, a
network must he established among the elements. We

assume here that these processing stages are largely static
because of the data that would be lost during any reconfig-

uration. Thus, the satellite data flows represent fixed inter-

connections beyond the underlying dynamic network

design. Further, scalability is provided by the addition of

separate processing systems for additional satellite data

streams in an independent fashion with linear cost. The

streams can be compressed from the satellite to the pipe-

line processor, but the inter-process bandwidth require-
ments do not necessitate intermediate compression prior to

storage.

Satellitedata _ 1

i "--'-1
[ DAAC !

FIGURE 6. Satellite data flow (11.5 Mbps)
- fixed interconnection

As a side-bar, we note that compression of archived

data may have unanticipated effects on the communication
load of the user visualization processing, as well as affect-

ing retrieval. Extraction of particular information is com-

plicated by stream encoding because it may require the

decoding of a large section of data to locate a particular
item, especially if the encoding destroys the key informa-
tion. Effort should be made to avoid this if random access

is required.
Further, a variable bit-rate encoding may cause fluctu-

ating loads on the storage and extraction processes. While

the storage process may be able to accommodate this fluc-

tuation, the output data fluctuation will generate variable
bit-rate streams to the extraction processors, which will

require jitter control to permit stream merging. Recent
research has also indicated that variable bit-rate streams
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cancauseinterferenceeffectsinnetworks,evenwhenthe
streamsdonotdirectlycompeteforresources.

Theuservisualizationmayrequireanarbitraryamount
of pipelining, merging, and interleaving of extracted

archive information (Figure 7). Whereas the individual

streams are independent to permit independence in user

control, the allocation of resources to the extraction pro-
cesses is necessarily highly dynamic. The resources of

extraction processes should be part of a dynamically
reconfigurable network so additional resources can be

added for additional functionality or scale of service.

Processing the streams Usually occurs in the uncom-

pressed domain, so any compression should occur at the

final stage before user output. As a result, compression.
cannot be effectively used to reduce internal network load.

The resulting interaction requires a very high bandwidth,

very high connectivity network, such as BISDN (i.e.,
ATM).

If the user visualizations are restricted to conventional

resolutions (500x500 at 1-8 bits, rather than 1000xl000 8-

24 bits deep), the data streams are reduced from 200-600

Mbps to 6-50 Mbps, at full-mot/on 24 frames/second.
While these streams cannot be accommodated in even a

single Ethernet hop, a modified FDDI ring can be used.

User visualization

User visualization

E

Q'_=DATA

DAAC

FIGURE 7. User visualization flow
(200-600 Mbps raw /
5-12 Mbps compressed)

Consider the dual-ring FDDI. Each level of the ring can

accommodate 100 Mbps. There are some recent protocol

systems which permit the utilization of multiple segments
of the ring simultaneously; this would permit sequences of

processors on the ring to be configured as a pipeline, and
the output would be collected on the other ring. The result

would permit redistribution and configuration of extrac-

tion processing resources within the ring.
If the visualization stream is not full-motion or full-

color, the bandwidth required would be reduced even fur-

ther. Also, it is not clear at this time whether the full bit-

rate is required during extraction or is the result of data

stream merging costs, the latter of which could be trans-

mitted to the user in a repeating loop.

4.7: Meta-data flow diagram

The other flows denote the control streams. Some of

these streams are user-specified control, and others are

control between components of the system (Figure 8).
These are not high-bandwidth paths that dominate the net-

work design, but are communication paths which must be
provided, at least transitively, by the interconnection
topologies.

These streams include: interaction among the pipeline

elements, monitoring of archive access for dynamic reor-

ganization, user commands, extraction commands, data-
base retrieval commands, and communication between the

command processors for distributed resource allocation.

DATA

_-_ DATA

User commands

User commands

1 DAAC

FIGURE 8. Meta-data (control, management) flow
(low bandwidth)

4.8: Indicated design

The following are the recommendations for the design
of a network for a DAAC system that is flexible, scalable,
and secure.

There is a multiple ring structure. The rings comprise

the data input, query transformation, and data processing
and output components of operation. By separating the

structure thus, the satellite processing is partitioned from

the user-level operations and the query processing is parti-
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tioned from the internal extraction operations. The former

provides a robust isolation between data input and output
and the latter provides a similar isolation of user and data

processing. The result is a robust and secure system.
The distribution of satellite processing resources in a

high-speed ring (FDDI II) or BISDN network (ATM) pro-
vides enhanced pipelining capability, scalability, and

dynamic reorganization of resources not afforded by the
current, fixed interconnection within individual back-

planes [2]. This requires the use of emerging FDDI II pro-
tocols supporting the simultaneous use of multiple ring

segments, sometimes called 'multiple tokens'. This feature
of the network design was emphasized by the meta-data

description of the system.
The distribution of user query processing components

among a low speed ring or bus (Ethemet, for small dis-
tances, or token ring for larger distances) provides links

among the command processors to support distributed
resource allocation at scheduling time [10], [8]. This inter-

action was indicated by the step-wise refinement method.

The dynamic allocation of computation elements for

extraction processing is similar to the satellite processing

ring, i.e., both indicate an FDDI II modified multi-token

ring or an ATM switching system (supporting full inter-
connections via a SONET-rate crossbar or multistage

interconnection network). In the case of the extraction pro-

cessing, the status of processors must be monitored by the

query processing network for resource allocation. The idea
is that the resources of the high-speed extraction network

are allocated 'out-of-band', at scheduling-time, in the

query processing network.
The monitoring of the database usage and structure can

also occur within the query processing network, because it

is a resource re-allocation function.

The result is a system that is composed of three net-
works: one isolated multi-token FDDI II network or ATM

switching system for satellite data processing and a slow

query processing network linked to another fast extraction

processing network. Security is enforced in the slow query

processing network by nature of its physical partitioning
from the other two networks.

The general structure is visualized and instantiated with

canonical networks in Figure 9. The basic description is as
follows. A control console/host computer to each network

is assumed.
The satellites are connected to SatNet with T-3 (45

Mbps) lines. The Pipe Processors are as described in the

Ingestion portion, modified to provide a network interface,
rather than a VME/VSB interface [8]. SatNet is either an

FDDI II multi-token ring, or (optimally) an ATM BISDN

network, providing full crosspoint interconnection with
rates of STS-3 (155 Mbps) to STS-12 (620 Mbps). Until

such technology is commercially available, a conventional

analog crossbar can be used, because the connections
within this network are not frequently modified.

Satellites User Access Hosts

Pipe Extraction
Processors Processors

DATA

Monitor

FIGURE 9. Generalized structure of
telecommunications of EOSDIS DAAC

The same Pipe Processors can be used as extraction

engines, with downloadable programs, or by workstations,
as available. The design of ExtractNet supports heteroge-

neous systems, including supercomputers, workstations,

and special-purpose Pipe Processors (as in SatNet).
The extraction processors can be connected to an ATM

BISDN switch to implement the ExtractNet component.
The ExtractNet should not be implemented with FDDI II

or a crossbar, due to the highly dynamic reconfiguration

that needs to occur to support varying user-specified

extraction processes. The ExtractNet has a high bandwidth
link to the database and another to each of the user-host

processors. This latter link supports individual visualiza-
tion streams.

,The user access hosts are connected via a relatively

conventional token ring, such as FDDI, or even Ethernet.
Commands and resource allocation are processed on this

network; these are low-bandwidth activities. It is assumed
that one user-host will support each user connection

because of the bandwidth required per user connection for

high quality full-motion video. If still video is used, multi-

ple users can be supported per station.
The ControlNet is used for distributed resource alloca-

tion among the user hosts and out-of-band resource alloca-
tion of the components of ExtractNet. SatNet allocation
can occur off-line because the network is reconfigured

only periodically.
A separate monitor host performs low bandwidth com-

putations, such as database restructuring for performance
[1]. The design of the database to support dual high-band-

width ports, or possibly multiple high-bandwidth retrieval

ports to ExtractNet, is beyond the scope of this section.
User access is restricted to the Con_oiNet, where que-

ries are processed within the hosts, or possibly off-loaded
into the Extraction Processors of ExtractNet, or a separate

high-performance engine connected to ControlNet (like
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the monitor). The access control is both physical and logi-
cal, so that the user commands are prohibited from utiliz-
ing the ExtractNet or SatNet. The interaction is similar to

that of RPC, where user commands are decomposed into
fixed, preexisting procedures that are pipelined together.
User access is as secure as in RPC.

5: Conclusions

Here we have presented an architecture for the DMSS
of the IDM DAACs developed by stepwise refinement.
We have discussed how existing protocols are sufficient
for use in this architecture to support both data ingestion
and data fusion and visualization.

The DMSS architecture presented is scalable, partitions
the DMSS via gateway access servers, and includes inter-
nally replicated processing components. We have also
shown a design in which control is distinct from data

streams, both logically and topologically.
The architecture we show permits various implementa-

tions:

• gateway as authenticator only,
remainder as centralized server.

• gateway as delegator
using vector pipelined REV processors.

• gateway as authenticator
using REV on workstations.

It is this latter approach we feel is most general, scal-
able, and useful for the architecture of the DMSS IDM

DAACs.
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